organic compounds

8269 measured reflections

 $R_{\rm int} = 0.043$ 

1762 independent reflections

1586 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 1,2,3,4-Tetrahydroguinolin-7-amine

# Fan-Yong Yan,<sup>a</sup>\* Dong-Qing Liu,<sup>c</sup> Xiao-Hui Cao,<sup>b</sup> Xi-Long Yan<sup>b</sup> and lin-Peng Wang<sup>b</sup>

<sup>a</sup>School of Material Science and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300072, People's Republic of China, <sup>b</sup>College of Pharmaceuticals & Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China, and CSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China Correspondence e-mail: yfytju@yahoo.com

Received 14 October 2007; accepted 16 October 2007

Key indicators: single-crystal X-ray study; T = 113 K; mean  $\sigma$ (C–C) = 0.004 Å; *R* factor = 0.042; *wR* factor = 0.093; data-to-parameter ratio = 7.9.

The title compound, C<sub>9</sub>H<sub>12</sub>N<sub>2</sub>, crystallizes with two almost identical molecules in the asymmetric unit. The ring containing the N atom in the tetrahydroquinoline system adopts a half-chair conformation. The crystal structure is stabilized by intermolecular  $N-H\cdots N$  and  $N-H\cdots \pi$ hydrogen bonds.

#### **Related literature**

For related literature, see: Field & Hammond (1994).



#### **Experimental**

Crystal data

| $C_9H_{12}N_2$                  |
|---------------------------------|
| $M_r = 148.21$                  |
| Monoclinic, P21                 |
| a = 8.7642 (15)  Å              |
| b = 8.7401 (14)  Å              |
| c = 11.0393 (18) Å              |
| $\beta = 106.459 \ (7)^{\circ}$ |
|                                 |

V = 811.0 (2) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation  $\mu = 0.07 \text{ mm}^{-1}$ T = 113 (2) K  $0.10\,\times\,0.04\,\times\,0.04$  mm Data collection

```
Rigaku Saturn diffractometer
Absorption correction: multi-scan
  (Jacobson, 1998)
  T_{\min} = 0.993, T_{\max} = 0.997
```

Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.042$ | H atoms treated by a mixture of                           |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.093$               | independent and constrained                               |
| S = 1.09                        | refinement                                                |
| 1762 reflections                | $\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$ |
| 224 parameters                  | $\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$  |
| 1 restraint                     |                                                           |

# Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                     | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|--------------------------------------|----------|-------------------------|--------------|---------------------------|
| $N4 - H4A \cdots N2^{i}$             | 0.90 (3) | 2.39 (3)                | 3.271 (3)    | 164 (2)                   |
| $N4 - H4B \cdot \cdot \cdot Cg2^{i}$ | 0.90 (3) | 3.195                   | 4.015        | 149                       |
| $N2 - H2C \cdot \cdot \cdot N1^{ii}$ | 0.90 (3) | 2.40 (3)                | 3.194 (3)    | 147 (2)                   |
| $N2 - H2D \cdots Cg1^{iii}$          | 0.90 (3) | 2.53                    | 3.446        | 168                       |
| N3−H3···N4 <sup>iṽ</sup>             | 0.92 (3) | 2.22 (3)                | 3.078 (3)    | 156 (2)                   |
| $N1 - H1 \cdot \cdot \cdot N3^{iv}$  | 0.90 (3) | 2.44 (3)                | 3.323 (3)    | 167 (2)                   |

Symmetry codes: (i) -x + 2,  $y - \frac{1}{2}$ , -z; (ii) -x + 2,  $y + \frac{1}{2}$ , -z; (iii) x + 1, y + 1, z; (iv) -x + 1,  $y + \frac{1}{2}$ , -z. Cg1 is the centroid of the ring C13–C18 and Cg2 is the centroid of the ring C4-C9.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2542).

#### References

Field, G. & Hammond, P. R. (1994). US Patent No. 5 283 336.

Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokvo, Japan.

Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, 04455 [doi:10.1107/S1600536807050878]

# 1,2,3,4-Tetrahydroquinolin-7-amine

# F.-Y. Yan, D.-Q. Liu, X.-H. Cao, X.-L. Yan and J.-P. Wang

#### Comment

1,2,3,4-Tetrahydroquinolin-7-amine is an important intermediate for the preparation of 7-hydroxy-1,2,3,4-tetrahydroquinoline which is an intermediate useful for the economic manufacture of laser dyes for wavelengths between 540 and 610 nm (Field & Hammond, 1994). The present X-ray crystal structure analysis was undertaken in order to study the stereochemistry and crystal packing of 1,2,3,4-tetrahydroquinolin-7-amine The molecular structure of the title compound is illustrated in Fig. 1. There are two almost identical molecules in the asymmetric unit. The ring containing the nitrigen atom in the tetrahydroquinolin adopts a partical chair conformation. The crystal structure is stabilized by intermolecular N—H···R and N—H···R hydrogen bonds.

#### **Experimental**

7-nitro-1, 2, 3, 4-tetrahydroquinoline (0.05 mol, 8.91 g), 80 ml of methanol and 1.5 g of Raney nickel slurry were rinsed with methanol under nitrogen. Addition of a solution of 5.5 ml (0.1 mol) hydrazine hydrate in 10 ml of methanol to the stirred mixture started the reaction. The reaction mixture was heated under reflux to complete the reduction, the catalyst was filtered off through celite and washed with methanol. The filtrate was concentrated *in vacuo* and reconcentrated twice with toluene to remove water. The residue was crystallized from PE to give 6.95 g of 7-amine-1,2,3,4-tetrahydroquinolin as a white needle solid, suitable for X-ray analysis. 1,2,3,4-tetrahydroquinolin-7-amine was quite sensitive to air, it quickly changed black solid.

#### Refinement

H atoms were positioned geometrically with C—H = 0.93-0.98 Å and refined using riding model with  $U_{iso}$  (H) =  $1.2 U_{eq}$  (carrier). H atoms bonded to N were located from difference map and freely refined. Friedel pairs were merged and the absolute structure was arbitrarily assigned.

#### **Figures**



Fig. 1. The molecular structure of the title compound, drawn with 30% probability ellipsoids. H atoms are drawn as spheres of arbitrary radius.

Fig. 2. The crystal structure of the title compound, viewed along the b axis.

# 1,2,3,4-Tetrahydroquinolin-7-amine

C<sub>9</sub>H<sub>12</sub>N<sub>2</sub>  $M_r = 148.21$ Monoclinic,  $P2_1$  a = 8.7642 (15) Å b = 8.7401 (14) Å c = 11.0393 (18) Å  $\beta = 106.459 (7)^{\circ}$   $V = 811.0 (2) Å^3$  Z = 4 $F_{000} = 320$ 

#### Data collection

| Rigaku Saturn<br>diffractometer                       | 1586 reflections with $I > 2\sigma(I)$ |
|-------------------------------------------------------|----------------------------------------|
| Radiation source: rotating anode                      | $R_{\rm int} = 0.043$                  |
| Monochromator: confocal                               | $\theta_{\text{max}} = 26.4^{\circ}$   |
| T = 113(2)  K                                         | $\theta_{\min} = 3.0^{\circ}$          |
| ω scans                                               | $h = -10 \rightarrow 10$               |
| Absorption correction: multi-scan<br>(Jacobson, 1998) | $k = -10 \rightarrow 10$               |
| $T_{\min} = 0.993, T_{\max} = 0.997$                  | $l = -13 \rightarrow 13$               |
| 8269 measured reflections                             | Standard reflections: ?                |
| 1762 independent reflections                          |                                        |

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.042$  $wR(F^2) = 0.093$ S = 1.091762 reflections 224 parameters 1 restraint Primary atom site location: structure-inv

Primary atom site location: structure-invariant direct methods

Melting point: 91-93 K Mo K $\alpha$  radiation  $\lambda = 0.71070$  Å Cell parameters from 2296 reflections  $\theta = 1.9-27.5^{\circ}$  $\mu = 0.07 \text{ mm}^{-1}$ T = 113 (2) K Prism, colorless  $0.10 \times 0.04 \times 0.04 \text{ mm}$ 

 $D_{\rm x} = 1.214 {\rm Mg m}^{-3}$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0483P)^2 + 0.0684P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.15$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.18$  e Å<sup>-3</sup> Extinction correction: none

# Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| NT1  | 0.7007(2)  |             |            |            |
|------|------------|-------------|------------|------------|
| IN I | 0.7907(2)  | 0.5321 (2)  | 0.1189 (2) | 0.0251 (5) |
| N2   | 1.2746 (3) | 0.7827 (2)  | 0.1012 (2) | 0.0268 (5) |
| N3   | 0.3190 (2) | 0.2353 (3)  | 0.1461 (2) | 0.0244 (5) |
| N4   | 0.7647 (3) | -0.0285 (3) | 0.0695 (2) | 0.0267 (5) |
| C1   | 0.6786 (3) | 0.4944 (3)  | 0.1903 (2) | 0.0278 (6) |
| H1A  | 0.5921     | 0.4292      | 0.1385     | 0.033*     |
| H1B  | 0.6306     | 0.5892      | 0.2123     | 0.033*     |
| C2   | 0.7669 (3) | 0.4098 (3)  | 0.3100 (2) | 0.0313 (6) |
| H2A  | 0.8169     | 0.3164      | 0.2879     | 0.038*     |
| H2B  | 0.6912     | 0.3787      | 0.3571     | 0.038*     |
| C3   | 0.8946 (3) | 0.5144 (3)  | 0.3923 (2) | 0.0308 (6) |
| H3A  | 0.8432     | 0.5951      | 0.4300     | 0.037*     |
| H3B  | 0.9647     | 0.4540      | 0.4620     | 0.037*     |
| C4   | 0.9940 (3) | 0.5883 (3)  | 0.3161 (2) | 0.0227 (5) |
| C5   | 0.9367 (3) | 0.5982 (3)  | 0.1844 (2) | 0.0208 (5) |
| C6   | 1.0290 (3) | 0.6669 (3)  | 0.1147 (2) | 0.0216 (5) |
| H6   | 0.9884     | 0.6736      | 0.0254     | 0.026*     |
| C7   | 1.1788 (3) | 0.7255 (3)  | 0.1737 (2) | 0.0229 (5) |
| C8   | 1.2358 (3) | 0.7169 (3)  | 0.3057 (2) | 0.0259 (6) |
| H8   | 1.3378     | 0.7567      | 0.3481     | 0.031*     |
| C9   | 1.1429 (3) | 0.6501 (3)  | 0.3738 (2) | 0.0266 (6) |
| Н9   | 1.1824     | 0.6465      | 0.4633     | 0.032*     |
| C10  | 0.2362 (3) | 0.2950 (3)  | 0.2333 (3) | 0.0330 (7) |
| H10A | 0.1309     | 0.3353      | 0.1853     | 0.040*     |
| H10B | 0.2983     | 0.3800      | 0.2831     | 0.040*     |
| C11  | 0.2152 (3) | 0.1690 (4)  | 0.3212 (3) | 0.0356 (7) |
| H11A | 0.1514     | 0.0849      | 0.2714     | 0.043*     |
| H11B | 0.1574     | 0.2092      | 0.3796     | 0.043*     |
| C12  | 0.3775 (3) | 0.1080 (3)  | 0.3969 (2) | 0.0281 (6) |
| H12A | 0.4321     | 0.1861      | 0.4591     | 0.034*     |
| H12B | 0.3626     | 0.0154      | 0.4439     | 0.034*     |
| C13  | 0.4798 (3) | 0.0691 (3)  | 0.3116 (2) | 0.0219 (5) |
| C14  | 0.4495 (3) | 0.1397 (3)  | 0.1925 (2) | 0.0209 (5) |

# supplementary materials

| C15 | 0.5473 (3) | 0.1068 (3)  | 0.1147 (2) | 0.0201 (5) |
|-----|------------|-------------|------------|------------|
| H15 | 0.5266     | 0.1549      | 0.0346     | 0.024*     |
| C16 | 0.6734 (3) | 0.0052 (3)  | 0.1529 (2) | 0.0223 (5) |
| C17 | 0.7039 (3) | -0.0655 (3) | 0.2708 (2) | 0.0263 (6) |
| H17 | 0.7899     | -0.1352     | 0.2984     | 0.032*     |
| C18 | 0.6071 (3) | -0.0325 (3) | 0.3470 (2) | 0.0243 (5) |
| H18 | 0.6284     | -0.0814     | 0.4269     | 0.029*     |
| H1  | 0.749 (3)  | 0.574 (3)   | 0.042 (2)  | 0.023 (7)* |
| H3  | 0.323 (3)  | 0.297 (3)   | 0.080 (3)  | 0.032 (8)* |
| H2C | 1.218 (3)  | 0.832 (4)   | 0.031 (3)  | 0.037 (8)* |
| H2D | 1.360 (3)  | 0.841 (4)   | 0.147 (3)  | 0.039 (8)* |
| H4A | 0.769 (3)  | 0.048 (4)   | 0.015 (3)  | 0.041 (9)* |
| H4B | 0.866 (4)  | -0.066 (4)  | 0.107 (3)  | 0.048 (9)* |
|     |            |             |            |            |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| N1  | 0.0245 (10) | 0.0299 (13) | 0.0195 (11) | -0.0025 (9)  | 0.0039 (8)  | -0.0003 (10) |
| N2  | 0.0271 (11) | 0.0245 (13) | 0.0289 (13) | -0.0037 (9)  | 0.0084 (9)  | 0.0005 (10)  |
| N3  | 0.0270 (11) | 0.0248 (12) | 0.0234 (11) | 0.0066 (9)   | 0.0104 (9)  | 0.0049 (10)  |
| N4  | 0.0248 (11) | 0.0268 (13) | 0.0303 (12) | -0.0002 (9)  | 0.0109 (9)  | -0.0055 (11) |
| C1  | 0.0248 (12) | 0.0271 (15) | 0.0326 (14) | -0.0044 (11) | 0.0097 (10) | -0.0008 (12) |
| C2  | 0.0334 (13) | 0.0317 (15) | 0.0310 (15) | -0.0051 (12) | 0.0125 (11) | 0.0009 (13)  |
| C3  | 0.0364 (14) | 0.0321 (15) | 0.0251 (14) | -0.0082 (12) | 0.0103 (11) | 0.0006 (12)  |
| C4  | 0.0270 (12) | 0.0217 (13) | 0.0199 (12) | 0.0029 (10)  | 0.0073 (9)  | 0.0004 (10)  |
| C5  | 0.0221 (11) | 0.0159 (12) | 0.0238 (12) | 0.0037 (10)  | 0.0055 (9)  | -0.0023 (10) |
| C6  | 0.0241 (11) | 0.0209 (13) | 0.0186 (11) | 0.0038 (10)  | 0.0043 (9)  | -0.0023 (10) |
| C7  | 0.0255 (12) | 0.0181 (13) | 0.0260 (13) | 0.0012 (10)  | 0.0086 (10) | 0.0005 (11)  |
| C8  | 0.0256 (12) | 0.0234 (14) | 0.0254 (13) | -0.0028 (11) | 0.0020 (10) | -0.0032 (11) |
| C9  | 0.0325 (14) | 0.0256 (15) | 0.0194 (12) | 0.0025 (11)  | 0.0038 (10) | -0.0005 (11) |
| C10 | 0.0405 (15) | 0.0298 (16) | 0.0337 (15) | 0.0131 (12)  | 0.0184 (12) | 0.0063 (13)  |
| C11 | 0.0396 (15) | 0.0400 (17) | 0.0327 (14) | 0.0091 (13)  | 0.0191 (12) | 0.0043 (14)  |
| C12 | 0.0382 (14) | 0.0267 (15) | 0.0218 (12) | 0.0026 (11)  | 0.0124 (11) | 0.0017 (11)  |
| C13 | 0.0271 (12) | 0.0179 (13) | 0.0196 (11) | -0.0035 (10) | 0.0049 (9)  | -0.0021 (10) |
| C14 | 0.0208 (11) | 0.0166 (13) | 0.0240 (12) | -0.0017 (10) | 0.0043 (9)  | -0.0036 (10) |
| C15 | 0.0237 (12) | 0.0180 (13) | 0.0183 (11) | -0.0030 (10) | 0.0054 (9)  | 0.0003 (10)  |
| C16 | 0.0226 (11) | 0.0173 (12) | 0.0264 (13) | -0.0024 (10) | 0.0060 (10) | -0.0053 (11) |
| C17 | 0.0220 (12) | 0.0217 (14) | 0.0312 (14) | 0.0024 (10)  | 0.0013 (10) | -0.0019 (12) |
| C18 | 0.0284 (12) | 0.0220 (13) | 0.0191 (11) | -0.0020 (10) | 0.0014 (9)  | 0.0011 (11)  |

# Geometric parameters (Å, °)

| N1—C5  | 1.403 (3) | C6—C7   | 1.387 (3) |
|--------|-----------|---------|-----------|
| N1—C1  | 1.461 (3) | С6—Н6   | 0.9500    |
| N1—H1  | 0.90 (3)  | С7—С8   | 1.402 (3) |
| N2—C7  | 1.405 (3) | C8—C9   | 1.385 (3) |
| N2—H2C | 0.90 (3)  | С8—Н8   | 0.9500    |
| N2—H2D | 0.93 (3)  | С9—Н9   | 0.9500    |
| N3—C14 | 1.392 (3) | C10-C11 | 1.513 (4) |

| N3—C10     | 1.456 (3)   | C10—H10A      | 0.9900    |
|------------|-------------|---------------|-----------|
| N3—H3      | 0.92 (3)    | C10—H10B      | 0.9900    |
| N4—C16     | 1.411 (3)   | C11—C12       | 1.527 (4) |
| N4—H4A     | 0.90 (3)    | C11—H11A      | 0.9900    |
| N4—H4B     | 0.92 (3)    | C11—H11B      | 0.9900    |
| C1—C2      | 1.520 (4)   | C12—C13       | 1.512 (3) |
| C1—H1A     | 0.9900      | C12—H12A      | 0.9900    |
| C1—H1B     | 0.9900      | C12—H12B      | 0.9900    |
| C2—C3      | 1.529 (4)   | C13—C18       | 1.393 (3) |
| C2—H2A     | 0.9900      | C13—C14       | 1.407 (3) |
| C2—H2B     | 0.9900      | C14—C15       | 1.404 (3) |
| C3—C4      | 1.516 (3)   | C15—C16       | 1.387 (3) |
| С3—НЗА     | 0.9900      | C15—H15       | 0.9500    |
| С3—Н3В     | 0.9900      | C16—C17       | 1.397 (3) |
| C4—C9      | 1.389 (3)   | C17—C18       | 1.383 (3) |
| C4—C5      | 1.400 (3)   | С17—Н17       | 0.9500    |
| C5—C6      | 1.401 (3)   | C18—H18       | 0.9500    |
| C5—N1—C1   | 118.0 (2)   | C9—C8—C7      | 119.7 (2) |
| C5—N1—H1   | 112.7 (16)  | С9—С8—Н8      | 120.1     |
| C1—N1—H1   | 116.1 (16)  | С7—С8—Н8      | 120.1     |
| C7—N2—H2C  | 112.6 (17)  | C8—C9—C4      | 122.4 (2) |
| C7—N2—H2D  | 113.5 (16)  | С8—С9—Н9      | 118.8     |
| H2C—N2—H2D | 112 (3)     | С4—С9—Н9      | 118.8     |
| C14—N3—C10 | 118.9 (2)   | N3—C10—C11    | 109.7 (2) |
| C14—N3—H3  | 115.7 (16)  | N3-C10-H10A   | 109.7     |
| C10—N3—H3  | 117.0 (17)  | C11—C10—H10A  | 109.7     |
| C16—N4—H4A | 114.3 (19)  | N3—C10—H10B   | 109.7     |
| C16—N4—H4B | 115.7 (17)  | C11-C10-H10B  | 109.7     |
| H4A—N4—H4B | 110 (3)     | H10A—C10—H10B | 108.2     |
| N1—C1—C2   | 108.92 (19) | C10-C11-C12   | 109.9 (2) |
| N1—C1—H1A  | 109.9       | C10-C11-H11A  | 109.7     |
| C2—C1—H1A  | 109.9       | C12-C11-H11A  | 109.7     |
| N1—C1—H1B  | 109.9       | C10-C11-H11B  | 109.7     |
| C2—C1—H1B  | 109.9       | C12-C11-H11B  | 109.7     |
| H1A—C1—H1B | 108.3       | H11A—C11—H11B | 108.2     |
| C1—C2—C3   | 109.4 (2)   | C13—C12—C11   | 111.3 (2) |
| C1—C2—H2A  | 109.8       | C13—C12—H12A  | 109.4     |
| C3—C2—H2A  | 109.8       | C11—C12—H12A  | 109.4     |
| C1—C2—H2B  | 109.8       | C13—C12—H12B  | 109.4     |
| C3—C2—H2B  | 109.8       | C11—C12—H12B  | 109.4     |
| H2A—C2—H2B | 108.2       | H12A—C12—H12B | 108.0     |
| C4—C3—C2   | 111.3 (2)   | C18—C13—C14   | 117.7 (2) |
| С4—С3—Н3А  | 109.4       | C18—C13—C12   | 122.5 (2) |
| С2—С3—НЗА  | 109.4       | C14—C13—C12   | 119.7 (2) |
| C4—C3—H3B  | 109.4       | N3—C14—C15    | 118.6 (2) |
| С2—С3—Н3В  | 109.4       | N3—C14—C13    | 121.6 (2) |
| НЗА—СЗ—НЗВ | 108.0       | C15—C14—C13   | 119.7 (2) |
| C9—C4—C5   | 117.8 (2)   | C16—C15—C14   | 121.2 (2) |
| C9—C4—C3   | 121.6 (2)   | C16—C15—H15   | 119.4     |

# supplementary materials

| C5—C4—C3    | 120.6 (2)  | C14—C15—H15     | 119.4      |
|-------------|------------|-----------------|------------|
| C4—C5—C6    | 120.3 (2)  | C15—C16—C17     | 119.4 (2)  |
| C4—C5—N1    | 121.1 (2)  | C15—C16—N4      | 119.1 (2)  |
| C6—C5—N1    | 118.6 (2)  | C17—C16—N4      | 121.4 (2)  |
| C7—C6—C5    | 121.2 (2)  | C18—C17—C16     | 119.1 (2)  |
| С7—С6—Н6    | 119.4      | С18—С17—Н17     | 120.5      |
| С5—С6—Н6    | 119.4      | С16—С17—Н17     | 120.5      |
| C6—C7—C8    | 118.7 (2)  | C17—C18—C13     | 122.9 (2)  |
| C6—C7—N2    | 120.2 (2)  | C17—C18—H18     | 118.6      |
| C8—C7—N2    | 121.1 (2)  | C13—C18—H18     | 118.6      |
| C5—N1—C1—C2 | -47.4 (3)  | C14—N3—C10—C11  | -43.4 (3)  |
| N1—C1—C2—C3 | 62.4 (3)   | N3-C10-C11-C12  | 60.2 (3)   |
| C1—C2—C3—C4 | -48.7 (3)  | C10-C11-C12-C13 | -50.2 (3)  |
| C2—C3—C4—C9 | -160.7 (2) | C11—C12—C13—C18 | -158.1 (2) |
| C2—C3—C4—C5 | 20.2 (3)   | C11—C12—C13—C14 | 23.4 (3)   |
| C9—C4—C5—C6 | 0.8 (3)    | C10-N3-C14-C15  | -167.7 (2) |
| C3—C4—C5—C6 | 179.9 (2)  | C10-N3-C14-C13  | 16.0 (3)   |
| C9—C4—C5—N1 | 177.0 (2)  | C18—C13—C14—N3  | 175.9 (2)  |
| C3—C4—C5—N1 | -3.9 (4)   | C12-C13-C14-N3  | -5.5 (3)   |
| C1—N1—C5—C4 | 18.2 (3)   | C18-C13-C14-C15 | -0.3 (3)   |
| C1—N1—C5—C6 | -165.5 (2) | C12-C13-C14-C15 | 178.3 (2)  |
| C4—C5—C6—C7 | 0.4 (3)    | N3-C14-C15-C16  | -176.1 (2) |
| N1—C5—C6—C7 | -175.9 (2) | C13-C14-C15-C16 | 0.2 (3)    |
| C5—C6—C7—C8 | -1.0 (4)   | C14—C15—C16—C17 | -0.1 (3)   |
| C5—C6—C7—N2 | 174.8 (2)  | C14-C15-C16-N4  | 177.7 (2)  |
| C6—C7—C8—C9 | 0.3 (4)    | C15—C16—C17—C18 | 0.1 (3)    |
| N2—C7—C8—C9 | -175.4 (2) | N4—C16—C17—C18  | -177.6 (2) |
| C7—C8—C9—C4 | 0.9 (4)    | C16-C17-C18-C13 | -0.2 (4)   |
| C5—C4—C9—C8 | -1.5 (4)   | C14—C13—C18—C17 | 0.4 (3)    |
| C3—C4—C9—C8 | 179.5 (2)  | C12-C13-C18-C17 | -178.2 (2) |

Hydrogen-bond geometry (Å, °)

| D—H··· $A$                                         | <i>D</i> —Н                        | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|----------------------------------------------------|------------------------------------|--------------|--------------|------------|
| $N4$ — $H4A$ ··· $N2^{i}$                          | 0.90 (3)                           | 2.39 (3)     | 3.271 (3)    | 164 (2)    |
| N4—H4B…Cg2 <sup>i</sup>                            | 0.90 (3)                           | 3.195        | 4.015        | 149        |
| N2—H2C…N1 <sup>ii</sup>                            | 0.90 (3)                           | 2.40 (3)     | 3.194 (3)    | 147 (2)    |
| N2—H2D····Cg1 <sup>iii</sup>                       | 0.90 (3)                           | 2.53         | 3.446        | 168        |
| N3—H3···N4 <sup>iv</sup>                           | 0.92 (3)                           | 2.22 (3)     | 3.078 (3)    | 156 (2)    |
| N1—H1…N3 <sup>iv</sup>                             | 0.90 (3)                           | 2.44 (3)     | 3.323 (3)    | 167 (2)    |
| Symmetry address (i) $w \mid 2 \gg 1/2 = \pi$ (ii) | u + 2 + u + 1/2 = -i (iii) $u + 1$ | (1 - (in))   | 1/2 -        |            |

Symmetry codes: (i) -x+2, y-1/2, -z; (ii) -x+2, y+1/2, -z; (iii) x+1, y+1, z; (iv) -x+1, y+1/2, -z.



Fig. 1



